Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### (E)-2-[2-(4-Fluorobenzylidene)hydrazinocarbonyl]-N-isopropylbenzamide

# Ming Liu,<sup>a</sup>\* Yousheng Duan,<sup>a</sup> Yi Wang,<sup>a</sup> Wen-Xiong Zhang<sup>b</sup> and Shangzhong Liu<sup>a</sup>

<sup>a</sup>Department of Applied Chemistry, China Agriculture University, 100193 Beijing, People's Republic of China, and <sup>b</sup>College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, People's Republic of China Correspondence e-mail: shangzho@cau.edu.cn

Received 28 March 2009; accepted 10 June 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.069; data-to-parameter ratio = 16.8.

The title compound,  $C_{18}H_{18}FN_3O_2$ , adopts a *trans* conformation with respect to the C—N double bond. The dihedral angle between the two benzene rings is: 59.73 (6)°. Two independent N-H···O hydrogen bonds link the molecules into layers parallel to (101).

#### **Related literature**

For biologically active phthalic diamides, see: Coronado *et al.* (1994); Tohnishi *et al.* (2000). For the preparation of the title compound, see: Zaky (2002); Shigeru *et al.* (2003).



#### Experimental

Crystal data  $C_{18}H_{18}FN_3O_2$  $M_r = 327.35$ 

Monoclinic,  $P2_1/n$ *a* = 13.316 (3) Å b = 8.8904 (18) Å c = 14.102 (3) Å  $\beta = 91.10 (3)^{\circ}$   $V = 1669.2 (6) \text{ Å}^{3}$ Z = 4

Data collection

| Rigaku R-AXIS RAPID IP               | 15335 measured reflections             |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 3833 independent reflections           |
| Absorption correction: multi-scan    | 2302 reflections with $I > 2\sigma(I)$ |
| (ABSCOR; Higashi,1995)               | $R_{\rm int} = 0.046$                  |
| $T_{\min} = 0.944, T_{\max} = 0.972$ |                                        |
|                                      |                                        |
|                                      |                                        |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ H ato $wR(F^2) = 0.069$ incompositionS = 1.02ref3833 reflections $\Delta \rho_{max}$ 228 parameters $\Delta \rho_{pax}$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                   | <i>D</i> -H              | $H \cdot \cdot \cdot A$  | $D \cdots A$               | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------|--------------------------|--------------------------|----------------------------|--------------------------------------|
| $N3-H1\cdots O2^{i}$<br>$N1-H2\cdots O1^{ii}$ | 0.875 (15)<br>0.850 (15) | 2.127 (15)<br>1.976 (15) | 2.9887 (16)<br>2.8256 (16) | 168.4 (14)<br>177.8 (15)             |
| Summating and any (i)                         |                          | - 1. (::)                |                            |                                      |

Symmetry codes: (i)  $-x + \frac{3}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) -x + 1, -y + 2, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 2000); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Molecular Structure Corporation and Rigaku, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20572129), National Basic Research Program of China (2003CB114405) and National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (No. 2006BAE01AE01–11).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2090).

#### References

Coronado, R., Morrissette, J., Sukhareva, M. & Vaughan, D. M. (1994). Am. J. Physiol. 266, 1485–1504.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Molecular Structure Corporation and Rigaku (2000). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Rigaku (2000). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shigeru, N., Takeshi, S., Etsuko, M. & Yasuo, K. (2003). Synth. Commun. 33, 87–98.

Tohnishi, M., Nakao, H., Kohno, E., Nishida, T., Furuya, T., Shimizu, T., Seo, A., Sakata, K., Fujioka, S. & Kanno, H. (2000). Eur. Patent No. EP1006107. Zaky, H. T. (2002). *Heterocycl. Commun.* **8**, 355–360.

Mo  $K\alpha$  radiation

 $0.30 \times 0.30 \times 0.30$  mm

 $\mu = 0.09 \text{ mm}^{-3}$ 

T = 123 K

supplementary materials

Acta Cryst. (2009). E65, o1599 [doi:10.1107/81600536809022181]

### (E)-2-[2-(4-Fluorobenzylidene)hydrazinocarbonyl]-N-isopropylbenzamide

### M. Liu, Y. Duan, Y. Wang, W.-X. Zhang and S. Liu

#### Comment

Phthalic diamides possess insecticidal properties due to their ability to activate ryanodine receptor (Coronado *et al.*, 1994; Tohnishi *et al.*, 2000). The title compound (I), a new phthalic diamide derivative, was synthesized by the condensation of *N*-aminophthalimide with 4-fluorobenzaldehyde followed by a ring-opening reaction using isopropyl amine (Zaky, 2002; Shigeru *et al.*, 2003).

The molecular structure of the title compound is shown in Fig. 1. Molecule was proved to be a *trans* -isomer with respect to the C9=N2 double bond.

There are two independent N—H…O bonds (Table 1), which link molecules into the layers parallel to (101) plane (Fig. 2).

#### **Experimental**

To a solution of *N*-aminophthalimide (1.62 g, 10 mmol) and 4-fluorobenzaldehyde (1.24 g, 10 mmol) in 1,4-dioxane (100 ml), 12 N HCl (0.1 ml) was added at room temperature. After stirring for 5–10 min, a solution of isopropyl amine (1.16 g, 20 mmol) in 1,4-dioxane (10 ml) was added; the reaction mixture was stirred overnight at room temperature. After the solvent was evaporated under reduced pressure, the resulting mixture was dissolved in ethyl acetate (80 ml), washed with  $H_2O$  (3×30 ml) and dried with anhydrous sodium sulfate to give the title compound (2.01 g, 61.5%). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of ethanol solution at room temperature over one week.

#### Refinement

The H atoms bound to N atoms were located in a difference Fourier map and refined isotropically [N—H 0.850 (15), 0.875 (15) Å]. The remaining H atoms were positioned geometrically and included in the refinement in riding model approximation with C—H 0.95 (aromatic), 0.98 (methyl), 1.00 (methyne), and  $U_{iso}(H) = 1.2U_{eq}(C)[1.5U_{eq}(C)$  for methyl H atoms].

#### **Figures**



Fig. 1. Molecular structure of (I); displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radius.



Fig. 2. The crystal packing of (I) viewed along the [101] direction; hydrogen bonds are shown as dashed lines.

#### (E)-2-[2-(4-Fluorobenzylidene)hydrazinocarbonyl]-N- isopropylbenzamide

| Crystal data                                                   |                                              |
|----------------------------------------------------------------|----------------------------------------------|
| C <sub>18</sub> H <sub>18</sub> FN <sub>3</sub> O <sub>2</sub> | $F_{000} = 688$                              |
| $M_r = 327.35$                                                 | $D_{\rm x} = 1.303 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/n$                                           | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn                                            | Cell parameters from 15335 reflections       |
| a = 13.316 (3)  Å                                              | $\theta = 2.1 - 27.5^{\circ}$                |
| <i>b</i> = 8.8904 (18) Å                                       | $\mu = 0.09 \text{ mm}^{-1}$                 |
| c = 14.102 (3) Å                                               | T = 123  K                                   |
| $\beta = 91.10 \ (3)^{\circ}$                                  | Block, colourless                            |
| V = 1669.2 (6) Å <sup>3</sup>                                  | $0.30\times0.30\times0.30~mm$                |
| Z = 4                                                          |                                              |

#### Data collection

| Rigaku R-AXIS RAPID IP<br>diffractometer                    | 3833 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 2302 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.046$                  |
| Detector resolution: 10.00 pixels mm <sup>-1</sup>          | $\theta_{\text{max}} = 27.5^{\circ}$   |
| T = 123  K                                                  | $\theta_{\min} = 2.1^{\circ}$          |
| $\Omega$ scans                                              | $h = -17 \rightarrow 17$               |
| Absorption correction: multi-scan<br>(ABSCOR; Higashi,1995) | $k = -11 \rightarrow 11$               |
| $T_{\min} = 0.944, \ T_{\max} = 0.972$                      | $l = -18 \rightarrow 18$               |
| 15335 measured reflections                                  |                                        |

#### Refinement

| Refinement on $F^2$             | Hydrogen site location: inferred from neighbouring sites               |
|---------------------------------|------------------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent and constrained refinement |
| $R[F^2 > 2\sigma(F^2)] = 0.039$ | $w = 1/[\sigma^2(F_0^2) + (0.015P)^2]$                                 |

|                                                        | where $P = (F_0^2 + 2F_c^2)/3$                                                                           |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| $wR(F^2) = 0.069$                                      | $(\Delta/\sigma)_{max} < 0.001$                                                                          |
| <i>S</i> = 1.02                                        | $\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$                                                      |
| 3833 reflections                                       | $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$                                                   |
| 228 parameters                                         | Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Drimory atom site location: structure inverient direct |                                                                                                          |

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0285 (8)

Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| C1  | 0.62786 (10) | 0.87434 (17) | 0.48465 (10) | 0.0197 (3)                |
| C2  | 0.70864 (10) | 0.80962 (16) | 0.29308 (10) | 0.0179 (3)                |
| C3  | 0.72241 (10) | 0.78555 (15) | 0.47071 (10) | 0.0168 (3)                |
| C4  | 0.76143 (10) | 0.75512 (15) | 0.38154 (10) | 0.0162 (3)                |
| C5  | 0.85500 (10) | 0.68578 (15) | 0.37629 (10) | 0.0197 (3)                |
| Н5  | 0.8819       | 0.6634       | 0.3160       | 0.024*                    |
| C6  | 0.90921 (11) | 0.64909 (16) | 0.45774 (11) | 0.0228 (4)                |
| Н6  | 0.9739       | 0.6050       | 0.4531       | 0.027*                    |
| C7  | 0.86928 (10) | 0.67651 (16) | 0.54567 (11) | 0.0236 (4)                |
| H7  | 0.9057       | 0.6494       | 0.6017       | 0.028*                    |
| C8  | 0.77595 (10) | 0.74366 (16) | 0.55190 (10) | 0.0216 (4)                |
| H8  | 0.7482       | 0.7613       | 0.6124       | 0.026*                    |
| C9  | 0.44987 (11) | 0.65483 (17) | 0.36494 (10) | 0.0222 (4)                |
| Н9  | 0.3990       | 0.7297       | 0.3628       | 0.027*                    |
| C10 | 0.43139 (10) | 0.50842 (17) | 0.32041 (10) | 0.0215 (4)                |
| C11 | 0.35688 (11) | 0.49509 (19) | 0.24980 (11) | 0.0299 (4)                |
| H11 | 0.3173       | 0.5803       | 0.2331       | 0.036*                    |
| C12 | 0.33975 (12) | 0.3594 (2)   | 0.20378 (12) | 0.0384 (5)                |
| H12 | 0.2904       | 0.3510       | 0.1545       | 0.046*                    |
| C13 | 0.39601 (13) | 0.2385 (2)   | 0.23155 (12) | 0.0366 (5)                |
| C14 | 0.46863 (12) | 0.24391 (18) | 0.30209 (11) | 0.0307 (4)                |
| H14 | 0.5053       | 0.1565       | 0.3202       | 0.037*                    |
| C15 | 0.48647 (11) | 0.38099 (17) | 0.34587 (11) | 0.0237 (4)                |
|     |              |              |              |                           |

# supplementary materials

| H15  | 0.5371       | 0.3882       | 0.3940       | 0.028*     |
|------|--------------|--------------|--------------|------------|
| C16  | 0.66213 (10) | 0.75633 (16) | 0.12683 (10) | 0.0221 (4) |
| H16  | 0.6111       | 0.8369       | 0.1373       | 0.027*     |
| C17  | 0.60856 (12) | 0.61917 (18) | 0.08583 (11) | 0.0326 (4) |
| H17A | 0.6574       | 0.5385       | 0.0758       | 0.049*     |
| H17B | 0.5762       | 0.6458       | 0.0251       | 0.049*     |
| H17C | 0.5576       | 0.5848       | 0.1301       | 0.049*     |
| C18  | 0.74105 (11) | 0.81707 (18) | 0.05991 (11) | 0.0311 (4) |
| H18A | 0.7736       | 0.9053       | 0.0886       | 0.047*     |
| H18B | 0.7087       | 0.8457       | -0.0004      | 0.047*     |
| H18C | 0.7915       | 0.7392       | 0.0486       | 0.047*     |
| F1   | 0.37958 (8)  | 0.10376 (12) | 0.18747 (7)  | 0.0603 (4) |
| N1   | 0.53997 (9)  | 0.82179 (14) | 0.44990 (9)  | 0.0204 (3) |
| N2   | 0.53387 (8)  | 0.68275 (13) | 0.40673 (8)  | 0.0196 (3) |
| N3   | 0.70850 (9)  | 0.71718 (14) | 0.21866 (9)  | 0.0214 (3) |
| O1   | 0.63114 (7)  | 0.99350 (11) | 0.53105 (7)  | 0.0257 (3) |
| O2   | 0.66866 (7)  | 0.93655 (11) | 0.29200 (7)  | 0.0217 (3) |
| H1   | 0.7381 (11)  | 0.6294 (17)  | 0.2210 (11)  | 0.038 (5)* |
| H2   | 0.4879 (11)  | 0.8765 (18)  | 0.4542 (10)  | 0.039 (5)* |
|      |              |              |              |            |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C1  | 0.0210 (8)  | 0.0190 (8)  | 0.0193 (9)  | -0.0014 (7)  | 0.0050 (6)  | 0.0005 (7)   |
| C2  | 0.0172 (8)  | 0.0152 (8)  | 0.0215 (9)  | -0.0017 (7)  | 0.0023 (6)  | 0.0018 (7)   |
| C3  | 0.0184 (7)  | 0.0108 (7)  | 0.0214 (8)  | -0.0035 (6)  | 0.0021 (6)  | -0.0015 (6)  |
| C4  | 0.0178 (8)  | 0.0110 (7)  | 0.0197 (8)  | -0.0028 (6)  | 0.0009 (6)  | 0.0006 (7)   |
| C5  | 0.0210 (8)  | 0.0172 (8)  | 0.0210 (9)  | -0.0002 (7)  | 0.0043 (6)  | -0.0024 (7)  |
| C6  | 0.0191 (8)  | 0.0187 (8)  | 0.0305 (10) | 0.0035 (7)   | -0.0017 (7) | 0.0004 (7)   |
| C7  | 0.0258 (8)  | 0.0215 (8)  | 0.0233 (9)  | -0.0006 (7)  | -0.0052 (7) | 0.0030 (7)   |
| C8  | 0.0260 (8)  | 0.0222 (8)  | 0.0168 (8)  | -0.0028 (7)  | 0.0026 (6)  | -0.0006 (7)  |
| C9  | 0.0184 (8)  | 0.0221 (9)  | 0.0262 (9)  | 0.0009 (7)   | 0.0017 (7)  | 0.0001 (7)   |
| C10 | 0.0181 (8)  | 0.0267 (9)  | 0.0197 (9)  | -0.0052 (7)  | 0.0038 (6)  | -0.0024 (7)  |
| C11 | 0.0228 (9)  | 0.0406 (10) | 0.0264 (10) | -0.0045 (8)  | -0.0005 (7) | -0.0008 (8)  |
| C12 | 0.0292 (10) | 0.0578 (13) | 0.0284 (11) | -0.0181 (10) | 0.0031 (8)  | -0.0149 (10) |
| C13 | 0.0406 (11) | 0.0358 (11) | 0.0339 (11) | -0.0211 (9)  | 0.0180 (8)  | -0.0213 (9)  |
| C14 | 0.0332 (10) | 0.0252 (9)  | 0.0343 (10) | -0.0042 (8)  | 0.0161 (8)  | -0.0049 (8)  |
| C15 | 0.0219 (8)  | 0.0259 (9)  | 0.0235 (9)  | -0.0045 (7)  | 0.0056 (7)  | -0.0009 (8)  |
| C16 | 0.0262 (9)  | 0.0204 (8)  | 0.0197 (9)  | 0.0081 (7)   | -0.0045 (7) | -0.0010 (7)  |
| C17 | 0.0368 (10) | 0.0280 (9)  | 0.0326 (10) | 0.0038 (8)   | -0.0088 (8) | -0.0045 (8)  |
| C18 | 0.0387 (10) | 0.0294 (9)  | 0.0253 (10) | 0.0072 (8)   | 0.0010 (7)  | 0.0025 (8)   |
| F1  | 0.0638 (7)  | 0.0548 (7)  | 0.0630 (8)  | -0.0279 (6)  | 0.0211 (6)  | -0.0401 (6)  |
| N1  | 0.0160 (7)  | 0.0170 (7)  | 0.0283 (8)  | 0.0009 (6)   | 0.0017 (6)  | -0.0049 (6)  |
| N2  | 0.0213 (7)  | 0.0164 (6)  | 0.0211 (7)  | -0.0029 (6)  | 0.0028 (5)  | -0.0033 (6)  |
| N3  | 0.0283 (8)  | 0.0166 (7)  | 0.0192 (7)  | 0.0067 (6)   | -0.0036 (6) | -0.0018 (6)  |
| 01  | 0.0229 (6)  | 0.0202 (6)  | 0.0340 (7)  | -0.0007 (5)  | 0.0037 (5)  | -0.0103 (5)  |
| O2  | 0.0267 (6)  | 0.0135 (5)  | 0.0247 (6)  | 0.0028 (5)   | 0.0004 (5)  | 0.0015 (5)   |

Geometric parameters (Å, °)

| C1—O1    | 1.2455 (16) | C11—H11       | 0.9500      |
|----------|-------------|---------------|-------------|
| C1—N1    | 1.3438 (18) | C12—C13       | 1.363 (2)   |
| C1—C3    | 1.5022 (19) | C12—H12       | 0.9500      |
| C2—O2    | 1.2476 (16) | C13—F1        | 1.3656 (18) |
| C2—N3    | 1.3330 (18) | C13—C14       | 1.375 (2)   |
| C2—C4    | 1.500 (2)   | C14—C15       | 1.385 (2)   |
| C3—C8    | 1.3879 (19) | C14—H14       | 0.9500      |
| C3—C4    | 1.3964 (19) | C15—H15       | 0.9500      |
| C4—C5    | 1.3934 (18) | C16—N3        | 1.4658 (18) |
| C5—C6    | 1.3836 (19) | C16—C17       | 1.521 (2)   |
| С5—Н5    | 0.9500      | C16—C18       | 1.5247 (19) |
| C6—C7    | 1.380 (2)   | С16—Н16       | 1.0000      |
| С6—Н6    | 0.9500      | C17—H17A      | 0.9800      |
| C7—C8    | 1.3831 (18) | С17—Н17В      | 0.9800      |
| С7—Н7    | 0.9500      | С17—Н17С      | 0.9800      |
| С8—Н8    | 0.9500      | C18—H18A      | 0.9800      |
| C9—N2    | 1.2786 (17) | C18—H18B      | 0.9800      |
| C9—C10   | 1.464 (2)   | C18—H18C      | 0.9800      |
| С9—Н9    | 0.9500      | N1—N2         | 1.3796 (16) |
| C10—C15  | 1.393 (2)   | N1—H2         | 0.850 (15)  |
| C10-C11  | 1.3972 (19) | N3—H1         | 0.875 (15)  |
| C11—C12  | 1.386 (2)   |               |             |
| 01—C1—N1 | 120.58 (13) | C11—C12—H12   | 121.1       |
| O1—C1—C3 | 119.65 (13) | C12—C13—F1    | 118.60 (17) |
| N1—C1—C3 | 119.72 (13) | C12—C13—C14   | 123.75 (16) |
| O2—C2—N3 | 123.63 (14) | F1-C13-C14    | 117.65 (18) |
| O2—C2—C4 | 119.68 (13) | C13—C14—C15   | 117.74 (17) |
| N3—C2—C4 | 116.68 (13) | C13—C14—H14   | 121.1       |
| C8—C3—C4 | 119.79 (13) | C15—C14—H14   | 121.1       |
| C8—C3—C1 | 116.84 (13) | C14—C15—C10   | 121.07 (15) |
| C4—C3—C1 | 123.16 (13) | С14—С15—Н15   | 119.5       |
| C5—C4—C3 | 118.82 (13) | С10—С15—Н15   | 119.5       |
| C5—C4—C2 | 120.26 (13) | N3—C16—C17    | 109.39 (12) |
| C3—C4—C2 | 120.64 (12) | N3—C16—C18    | 110.32 (12) |
| C6—C5—C4 | 120.86 (14) | C17—C16—C18   | 111.86 (13) |
| С6—С5—Н5 | 119.6       | N3—C16—H16    | 108.4       |
| С4—С5—Н5 | 119.6       | С17—С16—Н16   | 108.4       |
| C7—C6—C5 | 120.02 (14) | C18—C16—H16   | 108.4       |
| С7—С6—Н6 | 120.0       | C16—C17—H17A  | 109.5       |
| С5—С6—Н6 | 120.0       | C16—C17—H17B  | 109.5       |
| C6—C7—C8 | 119.69 (14) | H17A—C17—H17B | 109.5       |
| С6—С7—Н7 | 120.2       | С16—С17—Н17С  | 109.5       |
| С8—С7—Н7 | 120.2       | H17A—C17—H17C | 109.5       |
| C7—C8—C3 | 120.76 (13) | H17B—C17—H17C | 109.5       |
| С7—С8—Н8 | 119.6       | C16C18H18A    | 109.5       |
| С3—С8—Н8 | 119.6       | C16-C18-H18B  | 109.5       |

# supplementary materials

| N2          | 120.58 (14) | H18A—C18—H18B | 109.5       |
|-------------|-------------|---------------|-------------|
| N2—C9—H9    | 119.7       | C16—C18—H18C  | 109.5       |
| С10—С9—Н9   | 119.7       | H18A—C18—H18C | 109.5       |
| C15-C10-C11 | 118.54 (15) | H18B—C18—H18C | 109.5       |
| C15—C10—C9  | 121.96 (14) | C1—N1—N2      | 121.06 (13) |
| C11—C10—C9  | 119.49 (14) | C1—N1—H2      | 118.7 (11)  |
| C12-C11-C10 | 121.04 (16) | N2—N1—H2      | 120.2 (11)  |
| C12-C11-H11 | 119.5       | C9—N2—N1      | 114.89 (12) |
| C10-C11-H11 | 119.5       | C2—N3—C16     | 122.92 (13) |
| C13—C12—C11 | 117.83 (16) | C2—N3—H1      | 121.8 (10)  |
| C13—C12—H12 | 121.1       | C16—N3—H1     | 115.3 (10)  |
|             |             |               |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                                              | <i>D</i> —Н                   | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------------------------------------------------|-------------------------------|--------------|--------------|------------|
| N3—H1···O2 <sup>i</sup>                              | 0.875 (15)                    | 2.127 (15)   | 2.9887 (16)  | 168.4 (14) |
| N1—H2···O1 <sup>ii</sup>                             | 0.850 (15)                    | 1.976 (15)   | 2.8256 (16)  | 177.8 (15) |
| Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+1 | , <i>−y</i> +2, <i>−z</i> +1. |              |              |            |



Fig. 1



